
Feature Sensitive Sampling for

Interactive Remeshing

Mario Botsch Christian Rössl Leif Kobbelt

Max-Planck Institut für Informatik, Computer Graphics Group

Im Stadtwald, 66123 Saarbrücken, Germany

Email: {botsch,roessl,kobbelt}@mpi-sb.mpg.de

Abstract

We present a technique for remeshing irregu-

lar triangles meshes where the distribution and

alignment can be adapted to the underlying ge-

ometry. Following the interactive virtual range

scanner approach we overcome aliasing prob-

lems by introducing a special sampling tech-

nique. A sampling grid that can be aligned to the

local features of the mesh is constructed inter-

actively in an intuitive way and without adding

reasonable overhead to the virtual scanning pro-

cess.

1 Introduction

Unstructured triangles meshes can represent sur-

faces of arbitrary shape and topology. That is

why they are the most versatile surface repre-

sentation in computer graphics. Triangulated

surfaces can be generated from many different

sources ranging from CAD models that consist

of polygons and NURBS-patches to point clouds

that are obtained from range scanners.

There are different applications that require

different properties on the meshes. So one may

use various triangulations of the same surface

each of which is suited for a specific applica-

tion. As a consequence there is a demand for

techniques that convert or remesh ”bad” meshes

to “good” meshes for the purpose of such appli-

cations.

In this paper we present an interactive remesh-

ing technique. Our aim is to generate highly reg-

ular meshes, i.e. most vertices have valence six.

The triangles should also be as “round” or equi-

lateral as possible. Consider an input mesh as

the one in figure 6 (top). The mesh is highly ir-

regular, the vertex valences mostly differ from

six, and there are ill shaped triangles. Such

meshes are a typical output of a decimation algo-

rithm. We want to convert this mesh to an almost

regular mesh. While the irregular but compact

mesh may be preferred for fast rendering, regu-

lar meshes are much more appropriate e.g. for

simulations using FEM and CFD.

We use an interactive approach for remeshing.

This allows great flexibility and a maximum of

user control over the remeshing process. The vir-

tual range scanner approach from [3] has proven

to be highly intuitive and efficient. E.g. [4, 5]

describe hierarchical algorithms for producing

meshes with subdivision connectivity while pre-

serving distinct features. In contrast our algo-

rithm does not generate a subdivision connectiv-

ity but an arbitrary mesh. It does not need global

information (parameterization), and it can be ap-

plied locally to parts of a mesh.

The main contribution of this paper is a tech-

nique for avoiding aliasing artifacts in virtual

range scans. [3] use a regular sampling grid

that allows exploiting the graphics hardware by

depth-buffer sampling. We extend this work

by defining a special sampling grid that can be

aligned to the underlying geometry, especially to

curved feature lines. As a consequence we obtain

samples that can be triangulated regularly with

greatly suppressed aliasing effects. A special

fishbone [8] like structure is used for defining

feature regions in an intuitive way. These “fish-



bones” are defined by lines of curvature on the

surface if available or they may be constructed

manually. Only few overhead is added to the pro-

cess of virtual range scanning while high quality

and very regular triangle meshes are obtained.

The following section of the paper gives a

brief overview over the virtual range scanner

technique. Then we describe our new approach

of feature sensitive sampling. In the last sections

we present some results and conclusions.

2 Virtual range scanning

During a scanning session the input mesh is ren-

dered in an OpenGL window so that the user can

look at it from arbitrary positions. The outcome

of the drawing process is used to generate a scan

that gets sewed into previous scans afterwards

[3]. Taking one virtual range scan consists of the

following steps:

1. Choosing the viewing (scanning) position

and direction by rotating, translating and

zooming the input mesh.

2. Scanning this view, leading to a mesh that

approximates the input mesh as seen from

the current position.

3. Masking the new mesh.

4. Merging the new mesh with the mesh de-

rived from previous scans.

2.1 Scanning

When rendering the geometry to be scanned

a depth value z := z(x, y) for each pixel

(x, y)⊤ is automatically stored in the z-buffer

of the graphics hardware. Therefore we get the

screen space coordinates (x, y, z)⊤ of the pixel

without any extra computation. These coordi-

nates are then unprojected to world coordinates

(x′, y′, z′)⊤ by the inverse of the rendering trans-

formations. These are the modelview matrix M,

the projection matrix P and finally the window-

to-viewport mapping V:







x′

y′

z′





 := (VPM)−1







x

y

z







There is an implicit rounding in the window-

to-viewport mapping when assigning real valued

coordinates to integer pixel coordinates. This

rounding can cause a global offset for the gener-

ated mesh. To minimize this effect we unproject

the center (x + 1
2
, y + 1

2
, z)⊤ of the pixel instead

of its lower-left corner (x, y, z)⊤ by using the in-

verse (V′)−1 of a modified V:

(V′)
−1

:=















2
w

0 0 1
w
− 1

0 2
h

0 1
h
− 1

0 0 2 −1

0 0 0 1















Using this technique we generate a new vertex

for each pixel that was drawn onto the screen.

These new vertices can now trivially be triangu-

lated because of the underlying grid structure of

the frame- and z-buffer.

With this flexible and intuitive interface the

user can control the size and the alignment of the

output triangles. Zooming in on the input mesh

results in a finer sampling. Therefore we get a

hardware based sub-sampling algorithm for free.

If feature lines of the input geometry are

aligned either horizontally or vertically on the

screen the resulting scanned triangles will have

their edges aligned to these features (cf. fig-

ure 1). While this alignment works perfectly for

straight feature lines it must fail for curved ones.

This is where our feature based sampling will

help.

2.2 Masking

When remeshing complicated geometry it is of-

ten useful not to scan the whole input mesh but

to restrict the scanning to a certain area. This

is done by using an intuitive “lasso” function to

select the region of interest. All new vertices

falling outside of this user-defined area will be

discarded. This can be used for including a small

high-resolution patch into a coarser mesh. We

just take a coarse scan of the whole object, se-

lect the region-of-interest and re-scan a zoomed

version of this area (cf. figure 2).

Additionally an automatic sampling quality

mask is applied to the remaining vertices. In the



Figure 1: At sharp feature lines, any sampling algorithm tends to generate alias artifacts (left) which

cannot be removed by refining the sampling density (center). However, aligning the sampling grid to

the feature improves the visual quality.

Figure 3: The stitching algorithm first inserts the new vertices into the old mesh then splits or flips

edges of the old mesh to interpolate the new mesh’s boundary edges and finally removes the redundant

part of the old mesh. Collapsing short edges in the resulting mesh removes badly shaped triangles

(from left to right).

overlapping parts of the meshes this masking en-

sures that the better sampling of this area will

replace the other one. To check this, every new

vertex gets projected onto the old mesh. If a new

vertex hits the old mesh, its quality is compared

to the quality of the triangle it projects to, and the

better one is kept.

The quality of a vertex or a triangle is defined

in terms of edge length and the sampling angle.

This is a very natural way to define sampling

quality because the smaller the sampling angle

and the shorter the distance between sampling

points gets, the more reliable the sampling will

be.

The projection of the new mesh onto the old

one can be quite expensive, since for every new

vertex the old triangle that lies closest to it has

to be found. This results in a time-consuming

quadratic search. The common way to cope with

this problem is to use appropriate space parti-

tioning structures like e.g. octrees or BSP-trees.

If we want to handle huge input data we have

to take care of memory consumption. Therefore

we again utilize the graphics hardware to accel-

erate this projection by so-called ID-rendering.

Every triangle in the old mesh is uniquely in-

dexed by its ID that can be encoded as a RGB-

color. Using this technique we can render up



Figure 2: The interactive approach provides an

intuitive interface to locally adapt the mesh res-

olution. Here the ear and the eye have been z-

buffer scanned with a higher density.

to 2redBits+greenBits+blueBits distinguishable tri-

angles. If this amount is not sufficient we can

increase it by using the front- and back-buffer or

do multi-pass rendering.

The vertex to be projected is now transformed

to screen coordinates by the graphics hardware

and we can identify the corresponding triangle be

just reading out the RGB-color at this pixel of the

frame-buffer. This may not exactly be the near-

est triangle, since especially near the contour of

the data many triangles get rendered into a small

portion of the screen. However the found trian-

gle is a very good first-guess for a local search

on the mesh. So we have reduced the projection

problem from a quadratic search to one render-

ing step, this corresponds to bucket-sorting.

After this two masking operations only those

pixels remain that lie within the user-defined

region-of-interest and pass the quality test in

overlapping regions. To avoid degenerated trian-

gles and gaps after the stitching, we conclude the

masking phase by applying morphological ero-

sion and specialized dilation operators on the set

of remaining pixels (cf. [1]). This can be done

quite efficiently since we still have the pixel-grid

parameterization.

2.3 Stitching

In the final step the acquired scan has to be

merged with the existing mesh that was derived

by previous scans. This is done by a slightly

modified mesh zippering algorithm (cf. [9]).

We first insert the boundary vertices of the new

mesh into the corresponding triangles of the old

mesh. We then insert the boundary edges of the

new mesh by intersecting or flipping edges of the

old mesh to generate a common boundary poly-

gon on both meshes. After this we remove the

part of the old mesh that is bounded by this poly-

gon and insert the new mesh. In order to improve

the mesh quality we post-optimize the seam area

by collapsing and flipping bad edges (cf. [2]).

The whole process is depicted in figure 3.

3 Feature based sampling

The original virtual range scan algorithm in [3]

samples the geometry over a regular grid. This

allows the exploitation of the graphics hardware

by using depth-buffer sampling. Aliasing arti-

facts are reduced by aligning the view to feature

lines. This works well for straight features but

still produces noticeable alias effects in curved

feature regions. Multiple iterations of sequent

aligning, masking, scanning and stitching is not

an appropriate option to cope with aliasing.

We extend this technique by introducing an

alternative sampling grid that can be aligned to

curved feature regions and thus suppresses alias-

ing. This grid can be set up from streamlines fol-

lowing the principle curvature directions or com-

pletely manually. Both ways only few curves

must be provided. The actual grid is constructed

from interpolating between these curves. In this

section we use the fishbone metaphor from [8]

for this construction process.

According to needs the user can choose ei-

ther the standard regular or the alternative curved

grid. The first option may be appropriate for

most parts of the mesh and provides excellent

performance due to hardware support. In con-

trast, our fishbone grid provides additional flexi-



bility in feature regions but a ray casting scheme

will be used for sampling.

3.1 Setting up a sampling grid

Feature regions are selected, resampled and tri-

angulated one after another. The stitching al-

gorithm merges a resampled submesh with the

original mesh replacing “bad” mesh regions. The

resulting mesh is the new input when fixing the

next feature region.

Let us assume that we can calculate curvature

information in every vertex of the input mesh,

e.g. the method in [7] can be used. Then a con-

tinuous vector field can be defined on the sur-

face by using barycentric interpolation on one of

the principle directions. (We choose the direc-

tion towards the maximum curvature.) We then

project the direction field to the current viewing

plane – one direction per pixel – allowing effi-

cient streamline tracing in 2D.

This interpolation and projection step can be

done very elegantly by the underlying rasteriza-

tion engine which maps the 3D mesh to the frame

buffer: the vector valued attributes can be en-

coded as RGB colors and assigned to the mesh

vertices. Rendering the mesh without any shad-

ing then generates a frame-buffer pixel matrix

which stores the interpolated values. Arbitrary

precision can be obtained by appropriate scaling

and multi-pass rendering. Finally, a normaliza-

tion step is done and we end up with a direction

value in every pixel.

Now feature lines are defined to follow the

principal directions. As a consequence an ideal

sampling grid is spanned by lines of curvature.

As mentioned, we can trace these lines entirely

in 2D.

We build this grid in a fishbone fashion by first

picking a backbone and then arranging the ribs in

orthogonal direction.

To define the backbone, the user can pick an

arbitrary point in the interior of the current seg-

ment. Starting at that point we compute the back-

bone curve by integrating along the minimum

curvature direction field. On the backbone curve

we distribute samples with constant arc-length

distance. The orthogonal ribs are then computed

Figure 4: Example for the generation of grid

lines. The fish bone in the top part is defined

by the dark streamlines: the backbone along the

principal direction towards the maximum curva-

ture and the key-ribs towards the minimum cur-

vature. (The middle key-rib was defined by a

straight line.) The blended ribs are drawn in

a light color. The bottom part shows the sam-

pling grid obtained from a fishbone. Here, the

backbone was defined by a streamline towards

the maximum curvature while the key-ribs are

lines into the minimum curvature direction at the

joints to the backbone.

by starting at those samples and integrating along

the maximum curvature direction. Depending on

the geometry minimum and maximum curvature

can be exchanged.

In some cases, however, this simple rib gener-

ation technique fails to produce useful grid lines.

Due to noise and the discretization of the direc-

tion field, neighboring lines can merge which de-

stroys the global fishbone structure. In order to

avoid this effect, the user can manually place a

few sample points on the backbone from where

the key-ribs are traced along the maximum cur-

vature directions. Inbetween these key-ribs we

uniformly distribute additional blended ribs. The

blended ribs result from interpolating between

the key-ribs. By properly choosing the starting

points for the key-ribs, we generate a high qual-

ity set of pseudo-parallel grid lines (figure 4) in

a few seconds.

Each grid line is represented by a polygon

with constant edge length h (arc-length param-

eterization). To uniquely describe the shape of



G0
F0

E0

β2

β1

p2

α2

γ1

α1
p1

p0 = b(t)
b(1)

b(0)
backbone b

γ2

Figure 5: The blending of strokes is based on

a decomposition into orientation (E0,F0) and

characteristic shape ({αi},{βi}) and controlled

by a parameter t ∈ [0, 1] with the backbone curve

b locally parameterized as shown.

a rib grid line we need the first polygon edge

E0 and a sequence of angles αi between suc-

cessive edges Ei and Ei+1. The complete grid

line can then be reconstructed by starting with

the first edge E0 and adding more edges Ei+1

with the same length in the direction determined

by the angles αi. In the grid line representation

[E0, {αi}], the edge E0 determines the orienta-

tion and the sequence {αi} determines the char-

acteristic shape (figure 5).

Assume we are given two key-ribs [E0, {αi}]
and [F0, {βi}] which start on the same backbone.

Then for every value t ∈ [0, 1] we find a new

starting point on the backbone arc between the

two key-ribs and the corresponding blended rib

is given by [G0, {γi} = {(1−t) αi +t βi}] where

the orientation G0 is given by an weighted av-

erage of E0 and F0 and the characteristic shape

is a weighted blend of the two key-ribs. Us-

ing this blending technique we can generate very

good fishbone type grid lines by prescribing only

rather few key-ribs.

After the rib generation, the fishbone struc-

ture is given by a set of polygons with unit edge

length h. The kth vertex p
(l)
k of the lth rib

Rl = [G0, {γi}] can be computed by

p
(l)
k = p0 + G0 + h

k−1
∑

i=1

(

cos(
∑i

j=1 γj)

sin(
∑i

j=1 γj)

)

,

or

p
(l)
k = p0 − G0 − h

−k−1
∑

i=1

(

cos(
∑i

j=1 γ−j)

sin(
∑i

j=1 γ−j)

)

for negative k.

Note that the user must take care that the

blended ribs do not intersect, i.e. a minimum

of key-ribs must be specified depending on the

curvature of the backbone. Intersecting ribs will

lead to back facing triangles that are ignored in

the triangulation step.

In practice it may be infeasible to strictly use

stream lines towards the minimum (backbone)

or the maximum (key-ribs) curvature. Reasons

could be noise and/or occlusion artifacts on the

projected direction field, or a direction field that

does not allow to construct a long backbone that

follows the feature. Then the backbone and/or

single key-ribs may be specified manually. This

can be done by drawing curves (e.g. interpo-

lating spline curves) in 2D. In fact, information

from the frame buffer may be utilized to make

this step easier and somewhat smarter by using

standard image processing techniques like [6].

3.2 Sampling

The organization of the rib vertices p
(l)
k to a se-

quence of sequences [[p
(l)
k ]k]l corresponds to a

rectilinear matrix type structure where the ver-

tices of one rib form a row [p
(l)
k ]k and the kth

vertex for all ribs [p
(l)
k ]l form a column.

We now use this structure for sampling and tri-

angulation. By casting rays from the eye point

through the rib vertices onto the original mesh

we get high quality samples. An initial ID-

rendering step efficiently provides a first guess

on what triangle will be hit by the ray. Only an

inexpensive local search is necessary for finding



intersections. Alternatively, advanced data struc-

tures like e.g. a BSP-trees of the original mesh

can be used.

4 Results

Our remeshing method generates regular sub-

meshes that are stitched into the input mesh

replacing irregular regions. For demonstration

we have remeshed two feature regions of a

mesh (figure 6) where a naive aligning technique

would not help. One clearly recognizes aliasing

in the upper left part of the mesh compared to the

feature sensitive remeshed upper right part. The

remaining flat parts have been remeshed with the

standard virtual range scanning approach. A to-

tal of three scans – two of them feature sensitive

– have been used to create the bottom mesh.

5 Conclusions

We presented a new method for remeshing ar-

bitrary meshes to highly regular ones. By ex-

tending the interactive virtual range scanner [3]

approach our new algorithm inherits all its intu-

itiveness and flexibility while aliasing problems

are reduced to a minimum. This is achieved by

constructing a sampling grid that adapts to fea-

ture lines on the input mesh rather than using the

standard pixel grid. As a consequence our tech-

nique produces high quality meshes also for re-

gions with curved feature lines.

The construction of the feature sensitive sam-

pling grid introduces only low overhead to the

virtual scanning process. The presented fishbone

approach may take advantage of curvature infor-

mation on the input mesh that indicates feature

regions. So grid lines (key-ribs) are generated

automatically. Due to blending, only a few of

these key-ribs are necessary to define a sampling

grid.

Acknowledgements

This work was partially supported by the BMW

AG, Munich.

References

[1] R. M. Haralick, S. R. Sternberg, X. Zhuang. Image

Analysis Using Mathematical Morphology. IEEE

Trans. on Pattern Analysis and Machine Intelli-

gence, Vol PAMI-9, No. 4, 1987, pp. 532–552

[2] H. Hoppe, T. DeRose, T. Duchamp, J. McDon-

ald, W. Stuetzle. Mesh Optimization. Proc. SIG-

GRAPH’94, 1994, 19–26.

[3] L. Kobbelt, M. Botsch. An Interactive Approach to

Point Cloud Triangulation. to appear in Computer

Graphics Forum (Proc. EUROGRAPHICS’2000).

2000

[4] L. Kobbelt, J. Vorsatz, U. Labsik, H-P. Seidel. A

Shrink Warpping Approach to Remeshing Polygonal

Surfaces. Computer Graphics Forum (Proc. EURO-

GRAPHICS’99), 1999, pp. 119–129

[5] A.W.F. Lee, W. Sweldens, P. Schröder,L. Cowsar,

D. Dobkin. MAPS: Multiresolution Adaptive Pa-

rameterization of Surfaces. Computer Graphics

(Proc. SIGGRPAH’98), 1998, pp. 95–104

[6] E.N. Mortensen, W.A. Barrett. Intelligent Scissors

for Image Composition. Computer Graphics (Proc.

SIGGRPAH’95), 1995, pp. 19-1-198

[7] C. Rössl, L. Kobbelt. Approximation and Visual-

ization of Discrete Curvature on Triangulated Sur-

faces. Proc. Vision, Modeling and Visualization’99,

1999, pp. 339–346

[8] C. Rössl, L. Kobbelt. Line-Art Rendering of 3D-

Models. submitted, 2000

[9] G. Turk, M. Levoy. Zippered Polygon Meshes from

Range Images. Computer Graphics (Proc. SIG-

GRAPH’94), 1994.



Figure 6: Top: “bad”, irregular mesh. Bottom: Two feature regions (in the upper right and bottom part

of the mesh) have been resampled with our feature sensitive method. Notice the difference between

naive aligning of a regular grid (upper left corner) to the use of a curved sampling grid (upper right

corner). The remaining flat parts have been processed with standard virtual range scans.


