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Abstract

This supplementary document explains in more detail the imple-
mentation of the plasticity model as well as the virtual node and
cutting algorithms mentioned in the main paper.

1 Introduction

Objects can not only transition between solid, shell, and rod in
space, regime changes can also develop over time. In plastic and
viscous deformations, for instance, material can be stretched into
thin sheets or strands, whose elastic behavior can correctly be cap-
tured by our approach. The topological changes induced by cutting
and fracturing can also generate material with small features in all
three dimensions that should be captured by the simulation system.

2 Plasticity

In order to show the applicability of our approach to these scenarios
we adapt the additive plasticity model given in [O’Brien et al. 2002]
to our approach and define plastic membrane and bending strain
variables αp,β

k
p at the elastons. By taking the difference between

the measured geometric strains αg,β
k
g (corresponding to equations

(5) and (6) in the main paper) and the stored plastic strains, we can
define the effective elastic strain as

αe = αg −αp, βk
e = βk

g − βk
p, (1)

Then the new elastic energy stored in a single elaston becomes
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)
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Additionally to the elastic forces, the gradient of the energy with
respect to the DOFs now also contains the elaston’s contribution to
the plastic force

fp
i = AT

i Cαp +
∑

k

(Bk
i )T Cβk

p. (3)

This force can simply be incorporated into the right-hand side of
the equation of motion

ρ ü− ∂W

∂u
= f .

For updating the plastic strains we rely on the same criteria as pro-
posed in [O’Brien et al. 2002] and adapt it straightforwardly to our
strain representation.

While this simple model already allows for the simulation of some
plastic deformation, it is not suitable for larger deformations when
combined with a linear strain measure. We therefore perform a pe-
riodic resampling step similar to the approach of [Wojtan and Turk
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2008] such that the plastic deformation is represented by the geom-
etry and does not need to be represented by the plastic strain vari-
ables anymore. Similar to [Müller et al. 2004], we do however not
transfer the entire plastic strain into the rest state geometry which
would remove any remaining elastic component, but perform the
resampling by the three steps discussed next.

Rest State Update In order to get a continuous transition of the
material position without having to worry about popping artifacts
we take the current configuration as the new rest state, which will
guaranteeC0-continuity of the solution across the resampling, sim-
ilar to [Wojtan and Turk 2008]. Material points, GMLS samples,
and elastons can all three be generated from scratch for the new rest
state as described in the sampling section of the main paper. Since
the new rest state entirely describes the current positional state of
the simulation, the new displacement field u can be set to zero.

Notation We will always use superscripts n for referring to quan-
tities computed in the new rest configuration. As in the main paper,
we use x̄ to denote positions in the old rest state and x for the de-
formed configuration which is identical to the new rest state.

Velocity Field Update In order to also have a smooth transi-
tion of the motion across the resampling, i.e., approximate C1-
continuity in time, we find the new velocity field vn(x) by mini-
mizing the least squares error between the new and the old velocity
field, defined as ∫

Ωn

‖vn(x)− v(x̄(x))‖2 dΩn. (4)

Note that these two fields are defined on separate domains. How-
ever, these domains are mapped one-to-one by x(x̄) = x̄ + u(x̄).
Since the two fields are represented in their corresponding bases
as vn(x) =

∑
i v

n
i N

n
i (x) and v(x̄) =

∑
i viNi(x̄), the least

squares problem basically becomes the following linear system:

Gnvn = Gv (5)

where Gn
ij =

∫
Ω
Nn

i N
n
j is the Gram matrix of the new basis, and

Gij =
∫

Ωn N
n
i Nj is a matrix transferring the old velocity field into

the new configuration. In order to evaluate these integrals numer-
ically, we do again take advantage of the higher-order integration
scheme used for the elaston derivation and mass matrix computa-
tion and perform this integration up to second order.

Plasticity Update The only remaining step is the transfer of the
plastic variables from the old to the new rest state. In order to under-
stand the reasoning for the following procedure, we quickly reca-
pitulate the three states involved (depicted in Fig. 1). First, we have
the undeformed configuration x̄ in which the discretization vari-
ables live. Second, we have a (virtual) physical rest state, which is
described implicitly by the plastic strain variables αp,β

k
p (dashed

region), and third, we have the current configuration x described by
the actual displacement field as x = x̄+u(x̄). During resampling,
we update the undeformed configuration to the current state. The
current configuration then coincides with the new undeformed con-
figuration. However, the physical rest state, which can change due
to plastic deformation, should stay the same during the resampling
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process. This can be achieved by defining the new plastic strain as
the negative of the old elastic strain [Müller et al. 2004].

This idea is realized in two steps. First, the new plastic strain can
be defined in the old rest configuration. This is done by evaluat-
ing the total membrane and bending strains contained in the de-
formation field u(x̄). Note that since we are using a corotational
approach, actually the rotated deformation field at the elaston’s
position is taken for the strain evaluation. Then (1) can just be
used to define the new plastic strains in the undeformed configu-
ration as −(αe +

∑
k θkβk

e). Note that this strain is still living
in the old undeformed configuration. Given a direction d in the
old configuration, the stretch in this direction can be measured as
−dT (αe +

∑
k θkβk

e)d, where θ is the evaluation point in coor-
dinates of the elaston’s local frame.

In a second step, in order to use this updated plastic strain in the new
rest state, it has to be transformed to the new configuration (Fig. 2).
We assume the local frames of two elastons in the old and new rest
state configurations are given as columns of the 3 × 3 matrices T
and Tn. Then we can use the deformation gradient F = I + ∇u
to define a matrix M that transforms a material direction dn in the
local frame of the deformed configuration to a direction d in the
local frame of the undeformed configuration as

M = TT F−1Tn. (6)

Using this map, we can compute stretch along dn in the new rest
state by mapping it back and evaluating it in the undeformed con-
figuration using the old strain. This gives us

(dn)T (αn
p +
∑

k

θkβ̃
kn

p )dn = −(dn)T MT (αe+
∑

k

θkβk
e)Mdn,

(7)
leading to corresponding plastic strains in the new rest state as

αn
p = −MT αeM (8)

and
β̃

kn

p = −MT βeM. (9)

While these two strains now allow for measuring stretch in direc-
tions defined in the new rest state, there are still two things missing.

First, the strain in the vicinity of the elaston’s center is measured
as αn

p +
∑

k θkβkn′

p where θ describes the evaluation point in the
elaston’s local frame. However, in the definition given above, θ is
still given in the old rest state’s local frame and needs also to be
transformed with the mapping M as

θ = Mθn. (10)

Incorporating this transformation into the new bending strains gives
then

βkn
p =

∑
j

Mjkβ̃
jn

p , (11)
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Figure 1: Illustration of geometric, elastic and plastic strain, as
well as the new plastic strain after resampling.
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Figure 2: Illustration of an elaston’s local frame in the rest state,
its mapped position in the new rest state, as well as the frame of a
nearby elaston whose plastic strain is extrapolated during resam-
pling.

Figure 3: Example of dynamic resampling of a swinging bar show-
ing elaston configurations before (left) and after (right) resampling.
Thanks to the smooth position and velocity interpolation, the sim-
ulation is free of any visible popping artifacts. The full animation
can be seen in the accompanying supplementary video.

such that the strain at a location θn in the new rest state can finally
be evaluated as

αn
p +

∑
k

θkβkn
p . (12)

So far, we are able to transform the plastic strain from a position
in the undeformed configuration to the corresponding position in
the deformed configuration. However, we would like to sample
the new rest state independently from the old sampling. In a first
step, we therefore sample the new positions together with the new
local frames. For each of these new elastons we then look up the
closest transformed elaston and use its new coordinate frame for
transferring the plastic strain to the transformed elaston.

As a final step, we then just need to extrapolate these strains to
the new elastons. We do this by defining a coordinate frame at the
closest transformed elaston where the axes correspond to the local
frame of the new elaston. In this frame, we can express the elaston’s
position as θ and since we assume the strain to be a linear function
in the vicinity of the transformed elaston, we can simply extrapolate
the plastic membrane strain to the new position as

αn
p +

∑
k

θkβkn
p . (13)

The bending strain stays the same. While different interpolation
schemes could be chosen for interpolating the plastic strain to the
new elaston locations, we did not observe any problem using this
linear extrapolation approach.

2



Unified Simulation of Elastic Rods, Shells, and Solids, Supplementary Material

3 Cutting and Meshless Virtual Node

Cutting applications are a further area where thin structures can ap-
pear dynamically and which require a proper handling by the sim-
ulation method. For cutting simulations, we need to introduce a
notion of connectivity between elastons. We do this by first com-
puting a connectivity graph between the densely sampled candidate
pointsM, where two candidate points are connected if they over-
lap. The Lloyd relaxation performed in the elaston sampling step
associates each candidate point with an elaston, which also implies
a connectivity graph between elastons (see Fig. 4 for an example).
Cutting can then be implemented by simply removing connections
between two previously connected candidate points.

Figure 4: Overlapping material spheres implicitly imply connec-
tivity (left). Elastons containing disconnected material components
are split up and elaston connectivity is computed (right).

Before starting the simulation, and after each change to the connec-
tivity graphs, a meshless equivalent of the “virtual node algorithm”
of [Molino et al. 2004] is performed. This consists of two steps.

First, new elastons are introduced to make sure the local connectiv-
ity graph of each candidate subsetMi is in itself connected. This
can be performed by looking at the material subsetMi of an elas-
ton and considering the connections between these points. If this
local connectivity graph consists of multiple disconnected compo-
nents, the old elaston is removed and new elastons are created, one
for each component. The local frame of the new elastons is again
found through a covariance analysis.

Second, for each GMLS sample point, the local connectivity graph
of all elastons influenced by that sample point is considered. If this
connectivity graph consists of multiple disconnected components,
the GMLS sample point is duplicated and each component gets its
own independent copy (see Fig. 5).
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Figure 5: DOFs containing disconnected elastons in their support
are duplicated for each component.
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